Issue 27, 2024

Quantifying Siglec-sialylated ligand interactions: a versatile 19F-T2 CPMG filtered competitive NMR displacement assay

Abstract

Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are integral cell surface proteins crucial for the regulation of immune responses and the maintenance of immune tolerance through interactions with sialic acids. Siglecs recognize sialic acid moieties, usually found at the end of N-glycan and O-glycan chains. However, the different Siglecs prefer diverse presentations of the recognized sialic acid, depending on the type of glycosidic linkage used to link to the contiguous Gal/GalNAc or sialic acid moieties. This fact, together with possible O- or N-substitutions at the recognized glycan epitope significantly influences their roles in various immune-related processes. Understanding the molecular details of Siglec–sialoglycan interactions is essential for unraveling their specificities and for the development of new molecules targeting these receptors. While traditional biophysical methods like isothermal titration calorimetry (ITC) have been utilized to measure binding between lectins and glycans, contemporary techniques such as surface plasmon resonance (SPR), microscale thermophoresis (MST), and biolayer interferometry (BLI) offer improved throughput. However, these methodologies require chemical modification and immobilization of at least one binding partner, which can interfere the recognition between the lectin and the ligand. Since Siglecs display a large range of dissociation constants, depending on the (bio)chemical nature of the interacting partner, a general and robust method that could monitor and quantify binding would be highly welcomed. Herein, we propose the application of an NMR-based a competitive displacement assay, grounded on 19F T2-relaxation NMR and on the design, synthesis, and use of a strategic spy molecule, to assess and quantify sialoside ligand binding to Siglecs. We show that the use of this specific approach allows the quantification of Siglec binding for natural and modified sialosides, multivalent sialosides, and sialylated glycoproteins in solution, which differ in binding affinities in more than two orders of magnitude, thus providing invaluable insights into sialoglycan-mediated interactions.

Graphical abstract: Quantifying Siglec-sialylated ligand interactions: a versatile 19F-T2 CPMG filtered competitive NMR displacement assay

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
13 Mar 2024
Accepted
08 May 2024
First published
07 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 10612-10624

Quantifying Siglec-sialylated ligand interactions: a versatile 19F-T2 CPMG filtered competitive NMR displacement assay

U. Atxabal, A. Fernández, M. J. Moure, K. Sobczak, C. Nycholat, V. Almeida-Marrero, I. Oyenarte, J. C. Paulson, A. D. L. Escosura, T. Torres, N. C. Reichardt, J. Jiménez-Barbero and J. Ereño-Orbea, Chem. Sci., 2024, 15, 10612 DOI: 10.1039/D4SC01723D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements