Issue 19, 2024

Pb2(SeO3)(SiF6): the first selenite fluorosilicate with a wide bandgap and large birefringence achieved through perfluorinated group modification

Abstract

Birefringent crystals serve as the core elements of polarizing optical devices. However, the inherent challenge of balancing bandgap and birefringence poses a significant hurdle in designing crystals with excellent overall performance. In this study, we propose a novel approach, namely modification with perfluorinated groups, to achieve dual enhancement of the bandgap and birefringence of selenite materials. We have successfully synthesized the first selenite fluorosilicate, namely, Pb2(SeO3)(SiF6). This compound exhibits a three-dimensional structure composed of two-dimensional lead selenite layers bridged by SiF6 octahedrons. Notably, by introducing a perfluorinated SiF6 group, the bandgap of the lead selenite compound has been expanded to 4.4 eV. Furthermore, Pb2(SeO3)(SiF6) demonstrates a large birefringence (0.161 @ 546 nm), surpassing most of the selenite compounds with a bandgap larger than 4.2 eV. Theoretical calculations suggest that the large birefringence of Pb2(SeO3)(SiF6) can be attributed to the synergistic effects of SeO3, PbO4 and PbO3F4 polyhedrons. Our research not only pioneers a new system for selenite materials, enriching the diversity of selenite structures, but also provides a design methodology for obtaining wide bandgap birefringent selenite.

Graphical abstract: Pb2(SeO3)(SiF6): the first selenite fluorosilicate with a wide bandgap and large birefringence achieved through perfluorinated group modification

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Feb 2024
Accepted
05 Apr 2024
First published
05 Apr 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 7104-7110

Pb2(SeO3)(SiF6): the first selenite fluorosilicate with a wide bandgap and large birefringence achieved through perfluorinated group modification

P. Li, C. Hu, J. Mao and F. Kong, Chem. Sci., 2024, 15, 7104 DOI: 10.1039/D4SC01376J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements