Issue 15, 2024

Efficient near-infrared emission benefits from slowing down the internal conversion process

Abstract

Organic deep-red (DR) and near-infrared (NIR) emitters with high photoluminescence quantum yield (PLQY) are rare due to the strong non-radiative (knr) decay. Here, we report two DR/NIR emitters with high PLQY, TPANZPyPI and TPANZ3PI. Interestingly, the TPANZPyPI film exhibits 46.5% PLQY at 699 nm. Theoretical calculations indicate that TPANZPyPI can achieve this high PLQY in the near-infrared emission region due to its small S1 to S0 internal conversion (IC) rate. Meanwhile, research has found that, compared to TPANZ3PI, TPANZPyPI with a more rigid structure can effectively suppress the T2 to T1 IC process, which is conducive to higher exciton utilization efficiency (EUE). TPANZPyPI's non-doped OLED shows NIR emission with 4.6% @ 684 nm maximum external quantum efficiency (EQEmax). Its doped OLEDs radiate DR with an EQEmax of 6.9% @ 666 nm. These EQEs are among the highest values for hybridized local charge transfer state materials emitting more than 640 nm. This work demonstrates for the first time, based on a combination of theory and experiment, that increasing the molecular rigidity can inhibit the excited state IC process in addition to the S1 to S0 IC, realizing efficient electroluminescence.

Graphical abstract: Efficient near-infrared emission benefits from slowing down the internal conversion process

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Feb 2024
Accepted
12 Mar 2024
First published
18 Mar 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 5589-5595

Efficient near-infrared emission benefits from slowing down the internal conversion process

M. Xie, Y. Zhou, H. Zhou, C. Ma, Q. Sun, S. Zhang, Y. Zhang, W. Yang and S. Xue, Chem. Sci., 2024, 15, 5589 DOI: 10.1039/D4SC00841C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements