Selectivity descriptors of the catalytic n-hexane cracking process over 10-membered ring zeolites

Abstract

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.

Graphical abstract: Selectivity descriptors of the catalytic n-hexane cracking process over 10-membered ring zeolites

Supplementary files

Article information

Article type
Edge Article
Submitted
25 Jan 2024
Accepted
21 Jun 2024
First published
24 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024, Advance Article

Selectivity descriptors of the catalytic n-hexane cracking process over 10-membered ring zeolites

P. Ma, H. Zhou, Y. Li, M. Wang, S. A. F. Nastase, M. Zhu, J. Cui, L. Cavallo, K. Cheng and A. Dutta Chowdhury, Chem. Sci., 2024, Advance Article , DOI: 10.1039/D4SC00603H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements