Cycl[2,2,4]azine-embedded non-alternant nanographenes containing fused antiaromatic azepine ring†
Abstract
The development of non-alternant nanographenes has attracted considerable attention due to their unique photophysical properties. Herein, we reported a novel aza-doped, non-alternant nanographene (NG) 1 by embedding the cycl[2,2,4]azine unit into the benzenoid NG framework. Single-crystal X-ray diffractometry suggests saddle or twisted nonplanar geometry of the entire backbone of 1 and coplanar conformation of the cycl[2,2,4]azine unit. DFT calculation together with solid structure indicates that NG 1 possesses significant local antiaromaticity in the azepine ring. By oxidative process or trifluoroacetic acid treatment, this nanographene can transform into a mono-radical cation, which was confirmed by UV/Vis absorption, 1H NMR, and electron paramagnetic resonance (EPR) spectroscopy. The antiaromaticity/aromaticity switching of the azepine ring on 1˙+ from 1 enables the high stability of this radical cation, which remained intact for over 1 day. Due to the electron-donating nature of the nitrogen and the unique electronic structure, NG 1 exhibits strong electron-donating properties, as proved by the intermolecular charge transfer towards C60 with a high association constant. Furthermore, selective modification of NG 1 was accomplished by Vilsmeier reaction, and the derivatives 7 and 8 with substituted benzophenone were obtained. The photophysical and electronic properties can be tuned by the introduction of different electronic groups in benzophenone.