Issue 3, 2024

Synthesis and properties of a series of sulfonate ester photoacid generators

Abstract

A total of six sulfonate polymeric nonionic photoacid generators (PAGs) have been synthesised and subjected to comprehensive characterization for their application in photoresist materials. The structures and properties of the compounds were confirmed through the utilisation of 1H NMR, 13C NMR, and UV measurements. The PAGs obtained displayed thermal stability up to 180 °C. PAGs exhibit a wide absorption spectrum, with maximum UV absorption ranging from 220 nm to 245 nm, rendering it highly applicable. Meanwhile, a spectrophotometric approach was employed to create an exposure acid production assay, which utilised rhodamine B as the acid sensor. The application of UV light at a wavelength of 254 nm to acetonitrile (ACN) solutions containing PAGs caused the dissociation of very unstable N–O bonds. The process resulted in the formation of the corresponding acid and 1,8-naphthalimide products, yielding high quantum efficiency and chemical conversion. Furthermore, based on the analysis of the decomposition of six PAGs and acid production tests, we have put forth a potential mechanism to explain the photogeneration of carboxylic and sulfonic acids. The mechanism for the homolytic cleavage of the N–O bond to generate acid was backed by calculations using time-dependent density functional theory (TD-DFT). The study of the synthesis and performance of sulfonate-based PAGs can help to gain a deeper understanding of the advantages and disadvantages of such nonionic PAGs, and guide the direction of the rational design of subsequent novel PAGs to achieve high acid production efficiency and a broad UV absorption range.

Graphical abstract: Synthesis and properties of a series of sulfonate ester photoacid generators

Article information

Article type
Paper
Submitted
29 Sep 2023
Accepted
19 Nov 2023
First published
24 Nov 2023

React. Chem. Eng., 2024,9, 630-641

Synthesis and properties of a series of sulfonate ester photoacid generators

Q. Sun, B. Feng, Z. Sun, R. Liu, H. Ding and Y. Jin, React. Chem. Eng., 2024, 9, 630 DOI: 10.1039/D3RE00511A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements