Issue 32, 2024

Impact of cathodic pH and bioaugmentation on acetate and CH4 production in a microbial electrosynthesis cell

Abstract

This study compares carbon dioxide conversion in carbonate-fed microbial electrosynthesis (MES) cells operated at low (5.3), neutral (7) and high (8) pH levels and inoculated either with wild-type or bioaugmented mixed microbial populations. Two 100 mL (cathode volume) MES cells inoculated with anaerobic digester sludge were operated with a continuous supply of carbonate solution (5 g L−1 as CO32−). Acetate production was highest at low pH, however CH4 production still persisted, possibly due to pH gradients within the cathodic biofilm, resulting in acetate and CH4 volumetric (per cathode compartment volume) production rates of 1.0 ± 0.1 g (Lc d)−1 and 0.84 ± 0.05 L (Lc d)−1, respectively. To enhance production of carboxylic acids, four strains of acetogenic bacteria (Clostridium carboxidivorans, Clostridium ljungdahlii, Clostridium autoethanogenum, and Eubacterium limosum) were added to both MES cells. In the bioaugmented MES cells, acetate production increased to 2.0 g (Lc d)−1. However, production of other carboxylic acids such as butyrate and caproate was insignificant. Furthermore, 16S rRNA gene sequencing of cathodic biofilm and suspended biomass suggested a low density of introduced acetogenic bacteria implying that selective pressure rather than bioaugmentation led to improved acetate production.

Graphical abstract: Impact of cathodic pH and bioaugmentation on acetate and CH4 production in a microbial electrosynthesis cell

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2024
Accepted
20 Jun 2024
First published
31 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 22962-22973

Impact of cathodic pH and bioaugmentation on acetate and CH4 production in a microbial electrosynthesis cell

E. Nwanebu, M. Jezernik, C. Lawson, G. Bruant and B. Tartakovsky, RSC Adv., 2024, 14, 22962 DOI: 10.1039/D4RA03906H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements