A facile approach to fabricate a stabilized slippery lubricant-infused porous surface with dynamic omniphobicity for self-cleaning
Abstract
Developing a slippery lubricant-infused porous surface (SLIPS) is an important strategy for fabricating dynamically omniphobic surfaces. In this study, biocompatible and non-toxic liquid silicone rubber, TiO2 nanoparticles, and dimethyl silicone oil were used to fabricate a SLIPS. Subsequently, systematic investigation was conducted to explore its associated properties and address existing challenges in this field. The chosen lubricant exhibited a strong chemical affinity towards the substrate, eliminating the need for any functionalization treatment prior to infusion. In addition, the fabricated SLIPS exhibited excellent dynamic omniphobicity as well as shear stability, thermal stability, chemical stability, and mechanical stability. Moreover, it demonstrated good self-cleaning performance for droplets, with varying surface energies, temperatures, and pH values, as well as for common dyes and contaminants. In addition, damage from external forces could self-repair on the SLIPS, which is beneficial for extending the service life and application range.