Issue 20, 2024, Issue in Progress

Carboxyl-functionalized two-dimensional MXene–Au nanocomposites were prepared as SERS substrates for the detection of melamine in dairy products

Abstract

In the present study, we address the limitations of conventional surface-enhanced Raman scattering (SERS) techniques for sensitive and stable detection of melamine in food products, especially dairy. To overcome these challenges, we developed a novel SERS-active substrate by incorporating gold nanoparticles (AuNPs) onto carboxyl-functionalized two-dimensional (2D) MXene material doped with nitrides, specifically Au–Ti2N–COOH. Our strategy leverages the unique physicochemical properties of MXene, a class of atomically thin, 2D transition metal carbides/nitrides, with tunable surface functionalities. By modifying the MXene surface with AuNPs and introducing carboxyl groups (–COOH), we successfully enhanced the interaction between the substrate and melamine molecules. The carboxyl groups form hydrogen bonds with the amino groups on the melamine's triazine ring, facilitating the adsorption of melamine molecules within the ‘hotspot’ regions responsible for SERS signal amplification. A series of characterization methods were used to confirm the successful synthesis of Au–Ti2N–COOH composites.Using Au–Ti2N–COOH as the SERS substrate, we detected melamine in spiked dairy product samples with significantly enhanced sensitivity and stability compared to nitride-doped MXene alone. The detection limit in liquid milk stands at 3.7008 μg kg−1, with spike recovery rates ranging from 99.84% to 107.55% and an approximate RSD of 5%. This work demonstrates the effectiveness of our approach in designing a label-free, rapid, and robust SERS platform for the accurate quantitation of melamine contamination in food, thereby mitigating health risks associated with melamine adulteration.

Graphical abstract: Carboxyl-functionalized two-dimensional MXene–Au nanocomposites were prepared as SERS substrates for the detection of melamine in dairy products

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Mar 2024
Accepted
19 Apr 2024
First published
29 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 14041-14050

Carboxyl-functionalized two-dimensional MXene–Au nanocomposites were prepared as SERS substrates for the detection of melamine in dairy products

D. Xi, R. Chen, S. Ren, Z. Jia and Z. Gao, RSC Adv., 2024, 14, 14041 DOI: 10.1039/D4RA02249A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements