Issue 19, 2024, Issue in Progress

Regioselective C(sp2)–H halogenation of pyrazolo[1,5-a]pyrimidines facilitated by hypervalent iodine(iii) under aqueous and ambient conditions

Abstract

An efficient and mild approach has been developed for the regio-selective direct C3 halogenation of pyrazolo[1,5-a]pyrimidines employing readily available potassium halide salts and a hypervalent iodine(III) reagent at ambient temperature. The protocol is both practical and environmentally friendly, utilizing water as a green solvent, potassium halides as an inexpensive and bench stable halogen source and PIDA as a non-toxic reagent, enabling clean and efficient halogenation at room temperature. The procedure yields a range of C3 halogenated pyrazolo[1,5-a]pyrimidines in good to excellent yields. Mechanistic studies suggest the involvement of electrophilic substitution mechanism in the halogenation process.

Graphical abstract: Regioselective C(sp2)–H halogenation of pyrazolo[1,5-a]pyrimidines facilitated by hypervalent iodine(iii) under aqueous and ambient conditions

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2024
Accepted
15 Apr 2024
First published
23 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 13095-13099

Regioselective C(sp2)–H halogenation of pyrazolo[1,5-a]pyrimidines facilitated by hypervalent iodine(III) under aqueous and ambient conditions

A. S. Chillal, R. T. Bhawale and U. A. Kshirsagar, RSC Adv., 2024, 14, 13095 DOI: 10.1039/D4RA02090A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements