Issue 15, 2024

Unveiling the multifaceted incorporation of Musa acuminata peduncle juice as a bio-corrosion inhibitor of mild steel in seawater-simulated solution

Abstract

This work assessed the ability of Musa acuminata peduncle juice extract to sustainably inhibit mild steel under salinized conditions. The effort sought to ascertain the new active material's inhibitory efficacy for inhibiting metal corrosion in seawater. M. acuminata peduncle juice was extracted from the M. acuminata peduncle. The functional group of the M. acuminata pedal juice was determined using Fourier transform infrared spectroscopy. The corrosion behavior was assessed using electrochemical impedance spectroscopy and potentiodynamic polarization by varying the M. acuminata peduncle juice at 0.1, 0.2, and 0.3 g L−1 for 300 K, 310 K, and 320 K, respectively. Scanning electron microscopy provided an image of the surface morphology of mild steel. Reduced corrosion current (icorr) was observed when M. acuminata pedal juice was present according to potentiodynamic polarization and studies. Moreover, adding M. acuminata peduncle juice increases resistance capacity transfer (Rct). The potentiodynamic polarization approach was used to obtain the optimum inhibitory efficiency (%IE) at 0.3 g L−1 doses with 88.0% efficiency at 300 K. The addition of M. acuminata peduncle juice results in a smoother, mild steel morphology than the surface without inhibitor additions. The molecules of active chemicals adhering to the steel surface were linked to increased corrosion inhibition. The study's findings demonstrated that M. acuminata peduncle juice is a promising biomaterial for mild steel corrosion inhibitors in a salty environment.

Graphical abstract: Unveiling the multifaceted incorporation of Musa acuminata peduncle juice as a bio-corrosion inhibitor of mild steel in seawater-simulated solution

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Feb 2024
Accepted
19 Mar 2024
First published
02 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 10662-10671

Unveiling the multifaceted incorporation of Musa acuminata peduncle juice as a bio-corrosion inhibitor of mild steel in seawater-simulated solution

A. O. Ezzat, V. S. Aigbodion, H. A. Al-Lohedan and C. J. Ozoude, RSC Adv., 2024, 14, 10662 DOI: 10.1039/D4RA00826J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements