Issue 1, 2024

Molecular dynamics simulation of crack propagation in very small grain size nanocopper with different grain size gradients

Abstract

In this paper, we use molecular dynamics to simulate the crack propagation behavior of gradient nano-grained (GNG) copper models with different grain size gradients, compare the crack propagation rates of different models, and analyze the microstructural changes and the mechanism of crack propagation. The simulation results show that the increase of the grain size gradient of the GNG copper model can improve the fracture resistance of the material, and the crack propagation mode undergoes a transition from brittle propagation along the grain boundaries to the formation of pores at the grain boundaries, and then to ductile fracture along the inclined plastic shear zone. The number of dislocations increases with the grain size gradient, while the crack passivation is more serious, indicating that a larger grain size gradient is more effective in inhibiting crack propagation. The introduction of gradient grain size promotes crack propagation and weakens the plasticity of the material relative to the nano-grained (NG) copper model.

Graphical abstract: Molecular dynamics simulation of crack propagation in very small grain size nanocopper with different grain size gradients

Article information

Article type
Paper
Submitted
30 Oct 2023
Accepted
14 Dec 2023
First published
02 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 616-625

Molecular dynamics simulation of crack propagation in very small grain size nanocopper with different grain size gradients

F. Xian, J. Zhou, X. Lian, J. Shen and Y. Chen, RSC Adv., 2024, 14, 616 DOI: 10.1039/D3RA07374B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements