Issue 6, 2024, Issue in Progress

Post-treatment strategies for pyrophoric KOH-activated carbon nanofibres

Abstract

The effect of two atmospheric post-treatment conditions directly after the KOH activation of polyacrylonitrile-based nanofibres is studied in this work. As post-treatment different N2 : O2 flow conditions, namely high O2-flow and low O2-flow, are applied and their impact on occurring reactions and carbon nanofibres' properties is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Raman spectroscopy, elemental analysis and CO2 and Ar gas adsorption. At high O2-flow conditions a pyrophoric effect was observed on the KOH-activated carbon nanofibers. Based on the obtained results from the TGA and DSC the pyrophoric effect is attributed to the oxidation reactions of metallic potassium formed during the KOH activation process and a consequent carbon combustion reaction. Suppression of this pyrophoric effect is achieved using the low O2-flow conditions due to a lower heat formation of the potassium oxidation and the absence of carbon combustion. Compared to the high O2-flow samples no partial destruction of the carbon nanofibers is observed in the SEM images. The determination of the adsorption isotherms, the surface area, the pore size distribution and the isosteric enthalpies of adsorption show the superior properties under low O2-flow conditions. The present micropore volume is increased from 0.424 cm3 g−1 at high O2-flow to 0.806 cm3 g−1 for low O2-flow samples, resulting in an increase of CO2 adsorption capacity of 38% up to 6.6 mmol g−1 at 1 bar. This significant improvement clearly points out the importance of considering highly exothermic potassium oxidation reactions and possible post-treatment strategies when applying KOH activation to electrospun carbon nanofiber materials.

Graphical abstract: Post-treatment strategies for pyrophoric KOH-activated carbon nanofibres

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Oct 2023
Accepted
30 Dec 2023
First published
25 Jan 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 3845-3856

Post-treatment strategies for pyrophoric KOH-activated carbon nanofibres

T. Fischer, A. Kretzschmar, V. Selmert, S. Jovanovic, H. Kungl, H. Tempel and Rüdiger-A. Eichel, RSC Adv., 2024, 14, 3845 DOI: 10.1039/D3RA07096D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements