Issue 5, 2024

Functionalized graphene-based materials for cementitious applications

Abstract

Graphene-based materials (GBM) are promising cementitious composite additives that can significantly improve the mechanical characteristics and durability of concrete due to their unique properties, such as high surface area and aspect ratio and excellent tensile strength, to name a few. To display their full potential, GBM have to be homogeneously dispersed into the aqueous environment of cement-based matrices. The present study addresses the issue of limited dispersibility in the aqueous media of GBM through the chemical functionalization of mono- and few-layer graphene structures with hydrophilic aryl sulfonate groups and shows that a series of mortar samples containing modified GBM exhibit increased flexural and compressive strength by up to 17% and 30%, respectively, compared to mortar references without additives.

Graphical abstract: Functionalized graphene-based materials for cementitious applications

Associated articles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Oct 2023
Accepted
16 Jan 2024
First published
19 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 3314-3320

Functionalized graphene-based materials for cementitious applications

A. Cacciatore, P. Zardi, L. Capone and M. Maggini, RSC Adv., 2024, 14, 3314 DOI: 10.1039/D3RA06886B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements