Issue 3, 2024

Doxorubicin-Polysorbate 80 conjugates: targeting effective and sustained delivery to the brain

Abstract

Targeting therapeutic agents to the brain to treat central nervous system (CNS) diseases is a major challenge due to the blood–brain barrier (BBB). In this study, an attempt was made to deliver a model drug such as doxorubicin (DOX), to the brain in a mouse model through DOX-Polysorbate 80 (DOX-PS80) conjugates. DOX was successfully conjugated with the non-ionic surfactant Polysorbate 80 (PS80) by carbamate linkage and the conjugate was characterized by different spectroscopic techniques, such as FTIR, UV-Visible and NMR. The DOX conjugation efficacy was found to be 43.69 ± 4.72%. The in vitro cumulative release of DOX from the conjugates was found to be 4.9 ± 0.8% in PBS of pH 7.3 and 3.9 ± 0.6% in simulated cerebrospinal fluid (CSF) of pH 7.3 at the end of 10 days. An in vitro BBB permeability assay was carried out using bEnd.3 cells and DOX-PS80 conjugate showed a 3-fold increase in BBB permeability compared with controls. In vitro cytotoxicity assay using U251 human glioblastoma cells showed an IC50 value of 38.10 μg mL−1 for DOX-PS80. Cell uptake studies revealed that DOX-PS80 was effectively taken up (90%) by the bEnd.3 and U251 cells and localized in cytoplasm at the end of 24 h. Pharmacokinetic parameters for DOX-PS80 were evaluated using in silico studies. Tumor spheroid assay and in vivo experiments in Swiss albino mouse demonstrated the possibility of DOX-PS80 conjugate crossing the BBB and delivering the drug molecules to the target site for treating CNS disorders.

Graphical abstract: Doxorubicin-Polysorbate 80 conjugates: targeting effective and sustained delivery to the brain

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2024
Accepted
16 Apr 2024
First published
10 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2024,1, 412-429

Doxorubicin-Polysorbate 80 conjugates: targeting effective and sustained delivery to the brain

S. Ram Prasad, S. S. Leena, A. Deepthi, A. N. Resmi, R. S. Jayasree, K. S. Sandhya and A. Jayakrishnan, RSC Pharm., 2024, 1, 412 DOI: 10.1039/D4PM00053F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements