Issue 2, 2024

Green synthesis of silver nanoparticles using Phyllanthus emblica extract: investigation of antibacterial activity and biocompatibility in vivo

Abstract

The application of nanotherapeutics is being considered as one of the most sought-after strategies to combat the threat posed by drug resistant bacteria. One promising type of nanotherapeutic is biogenic silver nanoparticles (bAgNPs) generated through exploiting the reducing potential of plant extracts. Herein, bAgNPs were synthesized at pH 7.4 (bAgNPs) and pH 10 (bAgNPs@pH) through green chemistry approaches using an extract of Phyllanthus emblica fruit as a source of reducing agent. The physicochemical properties, antibacterial potential, and biocompatibility of the as-synthesized bAgNPs were determined. The average size of bAgNPs and bAgNPs@pH was 15.3 and 20.1 nm, respectively, and both types of nanoparticles were negatively charged (i.e., ∼−25 mV). The as-synthesized bAgNPs exhibited excellent antibacterial activity against different bacterial strains such as Bacillus subtilis RBW, Escherichia coli DH5a, Salmonella typhi, Hafnia alvei, enteropathogenic E. coli, Vibrio cholerae, and Staphylococcus aureus. The most effective antibacterial activity of bAgNPs and bAgNPs@pH was observed against Hafnia alvei, a Gram-negative bacterium, with a zone of inhibition (ZOI) of ∼24 and 26 mm in diameter, respectively. The nanoparticles exhibited antibacterial activity through damaging the bacterial cell wall, oxidizing the membrane fatty acids, and interacting with cellular macromolecules to bring about bacterial death. Furthermore, bAgNPs showed excellent hemocompatibility against human red blood cells, and there was no significant toxicity observed in rat serum ALT, AST, γ-GT, and creatinine levels. Thus, bAgNPs synthesized using Phyllanthus emblica fruit extract hold great promise as nanotherapeutics to combat a broad spectrum of pathogenic bacteria. Future directions may involve further exploration of the potential applications of biogenic silver nanoparticles in clinical settings, including studies on long-term efficacy, extensive in vivo toxicity profiles, and scalable production methods for clinical use.

Graphical abstract: Green synthesis of silver nanoparticles using Phyllanthus emblica extract: investigation of antibacterial activity and biocompatibility in vivo

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Dec 2023
Accepted
28 Feb 2024
First published
21 Mar 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2024,1, 245-258

Green synthesis of silver nanoparticles using Phyllanthus emblica extract: investigation of antibacterial activity and biocompatibility in vivo

M. M. Hossain, A. Hamza, S. A. Polash, M. H. Tushar, M. Takikawa, A. B. Piash, C. Dekiwadia, T. Saha, S. Takeoka and S. R. Sarker, RSC Pharm., 2024, 1, 245 DOI: 10.1039/D3PM00077J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements