Cathode materials for non-aqueous calcium rechargeable batteries
Abstract
Calcium rechargeable batteries based on divalent charge carriers have the potential to meet the future demands for large-scale energy storage applications, due to the crustal abundance of Ca element and the high capacity and high safety of Ca metal anodes. The discernible progress in electrolyte and anode materials has put calcium battery technology a step closer to practice. However, the pursuit of high-voltage, high-capacity and stable cathode materials had been formidable because of the sluggish ion migration kinetics and the instability of host lattices during Ca2+ insertion and extraction. Unlocking the potential of Ca rechargeable batteries particularly hinges on the strategic identification of high-performance cathode materials. Herein, this review summarizes the representative strategies to develop novel cathode materials that allow reversible accommodation of Ca2+ ions for high energy output. The cathode materials can be classified into intercalation-type (layered structure, polyanionic compounds, and Prussian blue analogues) and conversion-type (organic materials, sulfur, and oxygen). The scrutinization of their performances and drawbacks sheds light on the current stage of cathode material advancement and provides informative suggestions for future studies to develop advanced calcium rechargeable batteries with competitive performance.
- This article is part of the themed collection: Recent Review Articles