Issue 16, 2024

Enhanced thermoelectric performance of a wide-bandgap twisted heterostructure of graphene and boron nitride

Abstract

The manipulation of the relative twist angle between consecutive layers in two-dimensional (2D) materials dramatically modulates their electronic characteristics. Twisted bilayer graphene (tblg) and twisted boron nitride (tBN) exhibit Moiré patterns that have the potential to revolutionize various fields, from electronics to quantum materials. Here, the electronic and thermoelectric properties of 21.8° tblg and 21.8° tBN and a 21.8° twisted graphene/boron nitride (Gr/BN) heterostructure were investigated using density functional theory and Boltzmann transport theory. The twisted Gr/BN heterostructure possesses a wide band gap of 1.95 eV, which overcomes the limitations of the absence of a band gap of graphene and boron nitride's extremely wide band gap. A significant increase in thermoelectric power factor was obtained for the heterostructure compared to its parent materials, 21.8° tblg and 21.8° tBN. It has a thermal conductivity of 5.88 W m−1 K−1 at 300 K, which is much lower than those of 21.8° tblg and 21.8° tBN. It is observed that graphene plays an important role in electron transport or power factor enhancement, whereas BN helps in reducing the thermal conductivity in twisted Gr/BN systems. A strong role of boundary scattering in thermal transport compared to electrical transport was observed. A high figure of merit (ZT) of 1.28 for the twisted Gr/BN heterostructure at a ribbon width of L = 10 nm and T = 900 K was obtained. This suggests its suitability as an effective material for thermoelectric applications.

Graphical abstract: Enhanced thermoelectric performance of a wide-bandgap twisted heterostructure of graphene and boron nitride

Article information

Article type
Paper
Submitted
08 Jan 2024
Accepted
12 Mar 2024
First published
13 Mar 2024

Nanoscale, 2024,16, 7951-7957

Enhanced thermoelectric performance of a wide-bandgap twisted heterostructure of graphene and boron nitride

N. Kumar and C. Bera, Nanoscale, 2024, 16, 7951 DOI: 10.1039/D4NR00095A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements