Issue 10, 2024

Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications

Abstract

The construction of superalkali halide perovskites has attracted attention for the development of new photovoltaic materials, but stable superalkalis have not been found until now. Herein, to construct new three-dimensional superalkali halide perovskites with a MI3 frame (M = Sn and Pb), a new Li(H2O)3+ superalkali cation is designed and selected based on low vertical ionization potential, suitable tolerance factor, small ionic radius and large dissociation energy. High-throughput first-principles calculations show that superalkalis with lower vertical ionization potentials exhibit stronger interactions with the MI3 frame. The normal and cubic Li(H2O)3MI3 perovskites and cubic Li(H2O)4PbI3 perovskites have direct band gaps, s–p and p–p electron transitions, effective carrier masses of less than 0.45me and exciton binding energies of less than 291 meV. Moreover, the cubic Li(H2O)3PbI3 perovskite with a direct band gap of 1.40 eV can in theory show a power conversion efficiency of 33.49%. These results strongly suggest that superalkali cations with large dissociation energy can be used to develop stable superalkali perovskites for photovoltaic applications.

Graphical abstract: Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications

Supplementary files

Article information

Article type
Communication
Submitted
01 Dec 2023
Accepted
06 Feb 2024
First published
06 Feb 2024

Nanoscale, 2024,16, 5130-5136

Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications

T. Zhou and A. Kuang, Nanoscale, 2024, 16, 5130 DOI: 10.1039/D3NR06132A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements