Issue 5, 2024

Atomic insight into the effects of precursor clusters on monolayer WSe2

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been attracting much attention due to their rich physical and chemical properties. At the end of the chemical vapor deposition growth of 2D TMDCs, the adsorption of excess precursor clusters onto the sample is unavoidable, which will have significant effects on the properties of TMDCs. This is a concern to the academic community. However, the structures of the supported precursor clusters and their effects on the properties of the prepared 2D TMDCs are still poorly understood. Herein, taking monolayer WSe2 as the prototype, we investigated the structure and electronic properties of SeN, WN (N = 1–8), and W8−NSeN (N = 1–7) clusters adsorbed on monolayer WSe2 to gain atomic insight into the precursor cluster adsorption. In contrast to W clusters that tightly bind to the WSe2 surface, Se clusters except for Se1 and Se2 are weakly adsorbed onto WSe2. The interaction between W8−NSeN (N = 1–7) clusters and the WSe2 monolayer decreases with the increase in the Se/W ratio and eventually becomes van der Waals interaction for W1Se7. According to the phase diagram, increasing the Se/W ratio by changing the experimental conditions will increase the ratio of SeN and W1Se7 clusters in the precursor, which can be removed by proper annealing after growth. W clusters induce lots of defect energy levels in the band gap region, while the adsorption of W1Se7 and SeN clusters (N = 3–6, 8) promotes the spatial separation of photo generated carriers at the interface, which is important for optoelectronic applications. Our results indicate that by controlling the Se/W ratio, the interaction between the precursor clusters and WSe2 as well as the electronic properties of the prepared WSe2 monolayer can be effectively tuned, which is significant for the high-quality growth and applications of WSe2.

Graphical abstract: Atomic insight into the effects of precursor clusters on monolayer WSe2

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2023
Accepted
26 Dec 2023
First published
27 Dec 2023

Nanoscale, 2024,16, 2391-2401

Atomic insight into the effects of precursor clusters on monolayer WSe2

Y. Zhang, Y. Chang, L. Zhao, H. Liu and J. Gao, Nanoscale, 2024, 16, 2391 DOI: 10.1039/D3NR05562K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements