Issue 3, 2024

The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR

Abstract

Herein, the typical components of blast furnace gas, including H2O and O2, were introduced to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst during the gas-phase sulfation of organic COS + CS2 at 50 °C. The characterization results demonstrate that the introduction of O2 or H2O during gas-phase sulfation enhances the conversion of organic COS + CS2 on a cubic fluorite CeO2 surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO2-OS catalyst. However, the introduction of O2 or H2O during the gas-phase sulfation increases the molar ratios of Ce3+/(Ce3+ + Ce4+) and Oβ/(Oα + Oβ + Oγ) on the sulfated CeO2-OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O2 and H2O. Furthermore, the reduction of sulfates formed under the action of O2 or H2O decreases the weak acid sites of the sulfated CeO2-OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium–strong acid sites of the catalyst increases. These factors help to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst. Thus, there exists a synergistic effect of H2O and O2 introduction during gas-phase sulfation on the physical–chemical properties and catalytic performance of the sulfated CeO2-OS catalyst by organic COS + CS2 at 50 °C.

Graphical abstract: The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR

Supplementary files

Article information

Article type
Paper
Submitted
18 Sep 2023
Accepted
17 Nov 2023
First published
20 Dec 2023

Nanoscale, 2024,16, 1223-1237

The influence of H2O or/and O2 introduction during the low-temperature gas-phase sulfation of organic COS + CS2 on the conversion and deposition of sulfur-containing species in the sulfated CeO2-OS catalyst for NH3-SCR

Z. Xiong, Y. Zhu, J. Liu, Y. Du, F. Zhou, J. Jin, Q. Yang and W. Lu, Nanoscale, 2024, 16, 1223 DOI: 10.1039/D3NR04686A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements