Issue 9, 2024

Point defect-mediated hot carrier relaxation dynamics of lead-free FASnI3 perovskites

Abstract

In search of a promising optoelectronic performance, we herein investigated the hot carrier relaxation dynamics of a lead-free cubic phased bulk formamidinium tin triiodide (FASnI3) perovskite. To gain detailed theoretical insights, we should estimate the carrier relaxation dynamics of this pristine perovskite. To control the dynamics, point defects like central tin (Sn), iodine(I) anions, and formamidinium (FA) cations were introduced. With the iodine vacancy in the FASnI3 perovskite, the system seems to be unstable at room temperature, whereas the other three types of FASnI3 perovskites (pristine, Sn vacancy, and FA vacancy) are significantly stable at 300 K having semiconducting nature and excellent optical absorption in the UV-visible range. The computed electron–hole recombination time for the pristine system is 3.9 nanoseconds, which is in good agreement with the experimental investigation. The exciton relaxation processes in Sn and FA vacancy perovskites require 2.8 and 4.8 nanoseconds, respectively. These variations in the hot carrier relaxation dynamics processes are caused by the generation of significant changes in non-adiabatic coupling between energy levels, electron–phonon coupling, and quantum decoherence in different point defect analogous systems. The results presented here offer deeper insight into the temperature-dependent carrier relaxation dynamics of FASnI3 perovskites and thus open up opportunities for future exploration of their optoelectronic properties.

Graphical abstract: Point defect-mediated hot carrier relaxation dynamics of lead-free FASnI3 perovskites

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2023
Accepted
16 Jan 2024
First published
17 Jan 2024

Nanoscale, 2024,16, 4737-4744

Point defect-mediated hot carrier relaxation dynamics of lead-free FASnI3 perovskites

A. Ghosh, S. Kumar and P. Sarkar, Nanoscale, 2024, 16, 4737 DOI: 10.1039/D3NR04039A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements