Issue 8, 2024

Vertical heterostructure of graphite–MoS2 for gas sensing

Abstract

2D materials, given their form-factor, high surface-to-volume ratio, and chemical functionality have immense use in sensor design. Engineering 2D heterostructures can result in robust combinations of desirable properties but sensor design methodologies require careful considerations about material properties and orientation to maximize sensor response. This study introduces a sensor approach that combines the excellent electrical transport and transduction properties of graphite film with chemical reactivity derived from the edge sites of semiconducting molybdenum disulfide (MoS2) through a two-step chemical vapour deposition method. The resulting vertical heterostructure shows potential for high-performance hybrid chemiresistors for gas sensing. This architecture offers active sensing edge sites across the MoS2 flakes. We detail the growth of vertically oriented MoS2 over a nanoscale graphite film (NGF) cross-section, enhancing the adsorption of analytes such as NO2, NH3, and water vapor. Raman spectroscopy, density functional theory calculations and scanning probe methods elucidate the influence of chemical doping by distinguishing the role of MoS2 edge sites relative to the basal plane. High-resolution imaging techniques confirm the controlled growth of highly crystalline hybrid structures. The MoS2/NGF hybrid structure exhibits exceptional chemiresistive responses at both room and elevated temperatures compared to bare graphitic layers. Quantitative analysis reveals that the sensitivity of this hybrid sensor surpasses other 2D material hybrids, particularly in parts per billion concentrations.

Graphical abstract: Vertical heterostructure of graphite–MoS2 for gas sensing

Supplementary files

Article information

Article type
Communication
Submitted
01 Feb 2024
Accepted
29 Apr 2024
First published
08 May 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Horiz., 2024,9, 1330-1340

Vertical heterostructure of graphite–MoS2 for gas sensing

M. Tripathi, G. Deokar, J. Casanova-Chafer, J. Jin, A. Sierra-Castillo, S. P. Ogilvie, F. Lee, S. A. Iyengar, A. Biswas, E. Haye, A. Genovese, E. Llobet, J.-F. Colomer, I. Jurewicz, V. Gadhamshetty, P. M. Ajayan, U. Schwingenschlögl, P. M. F. J. Costa and A. B. Dalton, Nanoscale Horiz., 2024, 9, 1330 DOI: 10.1039/D4NH00049H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements