Synergistic augmentation and fundamental mechanistic exploration of β-Ga2O3-rGO photocatalyst for efficient CO2 reduction†
Abstract
We explore the novel photodecomposition capabilities of β-Ga2O3 when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga2O3-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga2O3-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga2O3 and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga2O3-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.