Issue 1, 2024

Halogen-bonded cocrystals via resonant acoustic mixing

Abstract

Resonant acoustic mixing is a relatively gentle mechanochemical technology that employs pressure waves to induce chemical and morphological transformations. We report here on the production of eleven halogen-bonded (XB) cocrystalline architectures via neat and liquid-assisted resonant acoustic mixing (RAM). Two strong iodinated XB donors, namely 1,4-diiodotetrafluorobenzene (p-DITFB, 1) and 1,3,5-trifluoro-2,4,6-triiodobenzene (sym-TFTIB, 2) each react with five XB donors, namely 2,3,5,6-tetramethylpyrazine (TMP, a), 4-dimethylaminopyridine (DMAP, b), 1,10-phenanthroline (o-Ph, c), 1,10-phenanthroline-5,6-dione (PheDON, d), and 4,5-diazafluoren-9-one (DIZFON, e) to form ten cocrystals. For these systems, it is shown that RAM is capable of producing the same products as are obtained via ball milling. Two novel cocrystals are obtained (of 2d featuring bifurcated XBs, and 2e featuring monofurcated XBs) and their single-crystal X-ray structures are reported. However, an eleventh stoichiomorphic cocrystal of p-DITFB and TMP is obtained exclusively via RAM, suggesting that the combination of RAM and milling approaches may afford a broader exploration of the polymorphic and stoichiomorphic landscape than the use of a single technique in isolation. All products are characterized via powder X-ray diffraction, and 13C cross-polarization magic angle spinning (CP/MAS) and 19F MAS NMR spectroscopy, providing further evidence for the phase purity of samples obtained from RAM experiments and for the degree of polymorphic control available when small volumes of liquid are employed in mechanochemical reactions. This work demonstrates the potential of RAM for the production of known and novel halogen-bonded cocrystalline assemblies, including polymorphic and stoichiomorphic structures.

Graphical abstract: Halogen-bonded cocrystals via resonant acoustic mixing

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2023
Accepted
16 Jan 2024
First published
31 Jan 2024
This article is Open Access
Creative Commons BY license

RSC Mechanochem., 2024,1, 50-62

Halogen-bonded cocrystals via resonant acoustic mixing

A. Nari, J. S. Ovens and D. L. Bryce, RSC Mechanochem., 2024, 1, 50 DOI: 10.1039/D3MR00028A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements