Issue 2, 2024

3D interconnected N-doped graphene architecture encapsulated with oxygen-deficient TiO2 nanotube array: synergism of oxygen vacancy and carbon materials on enhanced sulfur conversion and catalytic activity of TiO2 nanotube array in Li–S batteries

Abstract

The main challenges to Li–S battery use include poor conductivity, the shuttling effect, and slow LiPS transition. In this work, a 3D framework of N-doped graphene interconnected with defect-rich TiO2 nanotubes acts as a sulfur host. A narrow TiO2 nanotube reduces lithium-ion diffusion length and facilitates fast charge transport. The unique 3D porous nanostructure holds a wide range of sulfur species and provides optimal pathways for electrolyte penetration. It also counters volume expansion during cycling and serves as a platform for the successful absorption of LiPSs. The TiO2 nanowire with oxygen vacancy/N-doped graphene aerogel/sulfur (S-OVTNW/NGA) electrode has a small aspect ratio and is attached to graphene layers, which anchors LiPSs through a strong chemical interaction. Oxygen deficiency boosts electrical conductivity, reduces LiPS flow into the electrolyte, improves catalytic performance, and speeds up LiPS transformation. This design provides excellent electrochemical performance. The cathode has a notable primary specific capacity of 1370.2 mAh g−1 at J = 0.2 C, with a sulfur ratio of 80%. Following 100 cycles, the observed capacity of the specimen remains at 879.2 mAh g−1, signifying a retention rate of 66.5%. Its capacity of 635.5 mAh g−1 under 4 C shows its excellent rate performance. The findings may accelerate the development of electrode materials for lithium–sulfur (Li–S) batteries that are more efficient and cost-effective.

Graphical abstract: 3D interconnected N-doped graphene architecture encapsulated with oxygen-deficient TiO2 nanotube array: synergism of oxygen vacancy and carbon materials on enhanced sulfur conversion and catalytic activity of TiO2 nanotube array in Li–S batteries

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2023
Accepted
22 Nov 2023
First published
23 Nov 2023

Mol. Syst. Des. Eng., 2024,9, 158-170

3D interconnected N-doped graphene architecture encapsulated with oxygen-deficient TiO2 nanotube array: synergism of oxygen vacancy and carbon materials on enhanced sulfur conversion and catalytic activity of TiO2 nanotube array in Li–S batteries

S. J. Abdulrazzaq, Mol. Syst. Des. Eng., 2024, 9, 158 DOI: 10.1039/D3ME00163F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements