Pore-interface engineering improves doxorubicin loading to triazine-based covalent organic framework†
Abstract
High drug-loading capacity is the most advantageous property of porous nanocarriers for cancer therapy. Covalent organic frameworks (COFs) are a novel class of porous nanocarriers that have been explored for drug delivery because of their tuneable textural properties and pore-surface functionalization. The primary focus of this study is to determine the dominant factor influencing drug loading in COFs. These results highlight the importance of pore-wall functionalization over the surface area to achieve a high drug-loading capacity and better drug–COF interaction. In vitro biological studies confirmed the biocompatibility of bare COFs and the efficacy of doxorubicin-loaded COF in killing cancer cells. In essence, the findings of this study suggest focussing on drug–COF interactions rather than high crystallinity and surface area for enhanced drug loading.

Please wait while we load your content...