Issue 5, 2024

N and P-type zwitterion gated organic field effect transistors

Abstract

Low voltage operation in organic field effect transistors (OFETs) requires dielectric materials with extremely large capacitance. We explored a novel zwitterion-based dielectric material prepared using 4-(3-Butyl-1-imidazolio)-1-butanesulfonate (ZI) in a poly(vinyl alcohol) (PVA) polymer matrix. P-type OFET devices were fabricated with poly(3-hexylthiophene-2,5-diyl) (P3HT), their performance was found to be strongly humidity dependent with humidified devices producing roughly the same current at a voltage nearly 30 times lower than devices tested under an inert atmosphere. N-type OFETs based on poly{[N,N′-bis(2-octyldodecyl)napthlene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-2T)) also showed improved current levels in humidified devices, but possessed a low on/off ratio. Impedance measurements of the dielectric film showed a marked increase in the magnitude and frequency response of the capacitance with increasing humidity. The process can be modelled in terms of a single rate-limiting process using the Havriliak–Negami equation. Infrared spectroscopy was used to further examine the intermolecular interactions responsible for the humidity-dependent capacitance. Changes were observed in the spectrum of PVA with ZI inclusion and with respect to humidity. We hypothesize that the ZI molecules rotate in response to an applied field and that rotation is inhibited by strong intermolecular interactions between ZI molecules and the polymer matrix under dry conditions. This hypothesis also can be used to rationalize the low on/off ratio of the P(NDI2OD-2T) transistors. In sum, we demonstrate a material with capacitance values approaching those of an electrostatic double layer and demonstrated that local intermolecular interactions are central to understanding material behavior.

Graphical abstract: N and P-type zwitterion gated organic field effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2024
Accepted
23 Jul 2024
First published
24 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Appl. Polym., 2024,2, 926-935

N and P-type zwitterion gated organic field effect transistors

J. Kaur, H. Kaur and L. G. Kaake, RSC Appl. Polym., 2024, 2, 926 DOI: 10.1039/D4LP00121D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements