Issue 6, 2024

Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications

Abstract

The Al2O3/TiO2 nanolaminates (ATA NLs), with the dominant Maxwell–Wagner interfacial polarization, have been extensively explored in last decade due to their potential for new-generation energy storage applications. Here, we report the fabrication of device-grade sub-nanometric (<1 nm) ATA NLs using an optimized pulsed laser deposition technique, where the interface-confined carrier relaxation and sublayer conductivity contrast-induced Maxwell–Wagner interfacial polarization mechanism was engineered by precisely tailoring the individual Al2O3 and TiO2 sublayer thickness along with the top-bottom capping layer thickness. The formation of oxygen vacancy-generated carriers in reduced titania sublayers across Al2O3/TiO2 heterointerfaces and their relative response towards the applied field were responsible for both charge storage and leakage. An NL with a TiO2 and Al2O3 sublayer thickness of ∼1 and 0.6 nm, respectively, sandwiched between ∼3 nm Al2O3 barrier layers, has demonstrated an improved capacitance density of ∼33.1 fF μm−2 and a high cut-off frequency up to ∼0.5 MHz, along with a low dielectric loss of ∼0.032 and a reduced leakage current density of ∼3.08 × 10−7 A cm−2 at 1 V. The calculated energy density value of ∼4.6 J cm−3 achieved with this optimized subnanometric Al2O3/TiO2 laminate is comparable to those of state-of-the-art capacitive devices. These superior electrical properties and controllable dielectric relaxation make this laminate a promising high-k and low-loss dielectric material for next-generation nano-electronics and high-density energy storage capacitors.

Graphical abstract: Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Apr 2024
Accepted
02 Aug 2024
First published
06 Aug 2024
This article is Open Access
Creative Commons BY-NC license

RSC Appl. Interfaces, 2024,1, 1348-1359

Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications

P. S. Padhi, S. K. Rai, R. S. Ajimsha and P. Misra, RSC Appl. Interfaces, 2024, 1, 1348 DOI: 10.1039/D4LF00125G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements