Issue 9, 2024

Multi-channel dilution analysis

Abstract

Multi-channel dilution analysis (MCDA) is a new calibration method that performs multiple dilutions of a standard solution as it makes its way from an autosampler to an analytical instrument. MCDA is based on the standard dilution analysis (SDA) method that combines the traditional standard additions and internal standardization calibration methods, correcting for both matrix interferences and fluctuations in signal levels associated with variations in the sample environment. Analysts operate the instrument in the normal manner, as all dilutions are performed automatically by splitting the sample stream entering the instrument into multiple channels of different tubing diameters and lengths. This setup results in a signal “stairstep” as portions of solution are measured at different points in time. A calibration curve is prepared from the plateau regions of the signal stairstep. MCDA has been exhibited using inductively coupled plasma optical emission spectrometry, which is a workhorse for the determination of trace metals in solution. However, MCDA is applicable for any analyte of interest in any sample type, as long as the selected measurement technique accepts samples as a flowing liquid stream. MCDA is applied to the analysis of three certified reference materials by inductively coupled plasma optical emission spectrometry (ICP-OES). Percent recoveries for a suite of analytes range from 87–106%, with relative standard deviations on the order of 1%. MCDA simplifies the analysis process, increasing sample throughput by significantly decreasing the time required for solution preparation.

Graphical abstract: Multi-channel dilution analysis

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2024
Accepted
08 Jul 2024
First published
09 Jul 2024

J. Anal. At. Spectrom., 2024,39, 2220-2229

Multi-channel dilution analysis

W. B. Jones, R. M. Huff, A. L. Richardson, T. Dessoffy, S. M. Lewis, A. Eddy, A. J. Crossman and B. T. Jones, J. Anal. At. Spectrom., 2024, 39, 2220 DOI: 10.1039/D4JA00112E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements