Issue 1, 2024

A potential stibnite reference material for sulfur isotope determination by LA-MC-ICP-MS

Abstract

The identification of metal and sulfur sources in hydrothermal Sb ore deposits has long been recognized as a challenging task. Stibnite is commonly found as one of the primary ore minerals in most antimony deposits, and it can even occur as the sole ore mineral in some large antimony deposits; therefore, the sulfur isotope composition of stibnite often contains invaluable information for exploring the origin and ore-forming processes of Sb deposits. A well-characterized and matrix-matched material is imperative for conducting in situ S isotope microanalysis. However, the lack of standardized materials for stibnite hinders precise determination of sulfur isotope composition, thereby impeding the application of stibnite sulfur isotopes in deciphering the ore genesis of Sb deposits. The present study recommends the utilization of a natural stibnite (BJ-Snt) as a potential reference material for S isotope analysis employing laser ablation multicollector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). The sulfur isotope compositions, backscattered electron (BSE) maps, mineral phases, and elemental compositions were analyzed to evaluate the homogeneity of the stibnite BJ-Snt. The method validation was conducted through comparison of S isotope values obtained by LA-MC-ICP-MS and IRMS, as well as intercomparisons with two other laboratories. The consistent findings have established that BJ-Snt is a suitable standard for bracketing in situ S isotope measurement using LA-MC-ICP-MS, and the recommended δ34S value determined by IRMS was −0.71 ± 0.32‰ (2 s, n = 15).

Graphical abstract: A potential stibnite reference material for sulfur isotope determination by LA-MC-ICP-MS

Article information

Article type
Paper
Submitted
12 Sep 2023
Accepted
20 Nov 2023
First published
11 Dec 2023

J. Anal. At. Spectrom., 2024,39, 216-226

A potential stibnite reference material for sulfur isotope determination by LA-MC-ICP-MS

Z. Dai, S. Fu, Y. Liu, Y. Meng, Z. Bao, K. Hou and T. Lan, J. Anal. At. Spectrom., 2024, 39, 216 DOI: 10.1039/D3JA00308F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements