Issue 16, 2024

Comparative environmental impact assessment of activated carbon electrodes for supercapacitors

Abstract

Activated carbon (AC) is considered as a potential material for electrodes in supercapacitors; however, its production process entails significant emissions to the environment. This study aims to assess the environmental impacts of manufacturing AC and electrodes for supercapacitors from waste materials, utilizing the life cycle assessment (LCA) principles. The process of producing AC involves raw material preparation, hydrothermal carbonization, and chemical activation processes, utilizing potassium hydroxide (KOH) as a chemical agent. The environmental impact of AC production and fabrication of AC electrodes was analyzed using the SimaPro software. A cradle-to-gate study was conducted to analyze the production of 1 kg of AC and one electrode from waste materials, including oil palm leaves, Sesbania, and filter cake, chosen based on the local availability in the study area. Life cycle data were compiled from the laboratory, ecoinvent database, and calculations based on the mass and energy balance. Using the ReCiPe midpoint (H) characterization method, potential environmental impacts were computed across eighteen categories. Sesbania AC exhibited the highest impact across fourteen out of eighteen categories for producing 1 kg of AC, with the largest impact observed in the marine ecotoxicity category due to the presence of KOH in the chemical activation process. For producing 1 farad (F) electrode, Sesbania showed the lowest environmental impact due to its high specific capacitance. Its environmental impacts of producing a 1 F electrode were unexpectedly lower than those of oil palm leaves because the predominant environmental impacts were from hydrothermal carbonization and pretreatment rather than KOH activation. Additionally, Sesbania exhibited significantly higher yields in hydrothermal carbonization, resulting in the use of relatively fewer materials and less energy, thereby leading to reduced impacts compared to other materials. The developed AC electrode showed excellent performance in several environmental impact categories, with AC production being the main contributor.

Graphical abstract: Comparative environmental impact assessment of activated carbon electrodes for supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2024
Accepted
05 Jul 2024
First published
19 Jul 2024

Green Chem., 2024,26, 9209-9219

Comparative environmental impact assessment of activated carbon electrodes for supercapacitors

S. Luanwuthi, T. Akkharaamnuay, A. Phukhrongthung and C. Puchongkawarin, Green Chem., 2024, 26, 9209 DOI: 10.1039/D4GC02700K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements