Impact of complementary feeding on infant gut microbiome, metabolites and early development†
Abstract
Introducing complementary foods is critical for promoting infant health and development. During the weaning period, the dietary patterns provide essential nutrients and facilitate the development of a diverse gut microbiome, which plays significant roles in the regulation of immune, metabolic, and neurological functions. This study enrolled 200 families to assess the impact of complementary feeding on infant growth and health outcomes. Data included detailed records of feeding practices, infant growth measurements, health assessments, and fecal samples and breast milk collected between weeks 12 and 32 postpartum. The gut microbiome was analyzed using 16S rRNA sequencing, while metabolites such as human milk oligosaccharides (HMOs), monosaccharides, and short-chain fatty acids (SCFAs) were measured using chromatography-mass spectrometry. Results revealed a high prevalence of breastfeeding, with complementary food introduced at around 16 weeks. Significant alterations in the infant gut microbiome were observed, particularly in the genera Lactobacillus, Akkermansia, and Staphylococcus. Additionally, the levels of HMOs, monosaccharides, and SCFAs were found to be influenced by the introduction of complementary foods. Significant correlations emerged between complementary feeding practices, gut microbiome diversity, specific bacterial genera (e.g., Streptococcus, Lactobacillus, Bifidobacterium, and Clostridioides), and key metabolites (such as lacto-N-tetraose, lacto-N-neotetraose, mannose, and butyric acid). This study offers valuable insights into the complex interactions between complementary feeding, gut microbiome development, and metabolite profiles during early infant growth. Future research with larger cohorts and targeted dietary interventions is recommended to further elucidate the underlying mechanisms.