A novel synthesis method of medium- and long-chain triglyceride lipids from rubber seed oil catalyzed by enzymatic interesterification and its metabolism mechanism†
Abstract
Medium- and long-chain triglyceride (MLCT) is a striking structural lipid for the supply of energy and essential fatty free acids (FFAs) in the food field. This study aimed to prepare MLCT by enzymatic interesterification of rubber seed oil (RSO) and medium-chain triglyceride (MCT). Fortunately, the conversion of synthesized MLCT could reach 75.4% by the catalysis of Novozym 40086 (7 wt% to MCT) at a temperature of 40 °C with the substrate mole ratio of 1 : 0.7 (RSO : MCT). The as-synthesized MLCT contained unsaturated fatty acid (USFA, 50.13%) at the sn-2 position and exhibited superior performance on the acid value, peroxide value and iodine value in contrast to grade III soybean oil. Moreover, it exhibited the simultaneous release of LCFAs and MCFAs, extremely facilitating the reduction of body weight gain and control of the level of lipids in the blood. Finally, the preferred hepatic metabolism process of the obtained MLCT was proven to be the main cause of the reduced body weight and improved lipid levels by the in vivo deposition experiments. Therefore, our study suggested that the outstanding performance of the MLCT synthesized by RSO in foods as functional lipids.