Catalytic combustion of biodiesel wastewater over the Fe2O3 catalyst coupled with a Pt-based catalyst

Abstract

In this paper, biodiesel wastewater was treated by catalytic combustion in the case of catalyst coupling. The effects of reaction temperature, residence time and air flow on the treatment of biodiesel wastewater were investigated using the Fe2O3 catalyst, the Pt/Al2O3@cordierite catalyst and the Fe2O3 catalyst coupled with the Pt-based catalyst. The effects of high-temperature hydrothermal treatment on the two catalysts were evaluated. The catalytic stability was studied in continuous catalytic combustion. Detailed characterization of the two catalysts was carried out. The X-ray fluorescence (XRF), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization demonstrated that the Fe2O3 catalyst contained a significant amount of surface active oxygen and Fe2O3 existed in an amorphous form within the catalyst. The Fe2O3 catalyst could remove 90.6% of sulfur from wastewater, showing excellent desulfurization performance, but it was not resistant to high temperature. After 500 °C hydrothermal treatment, the chemical oxygen demand (COD) removal rate decreased significantly from 97.98% to 69.04% at the reaction temperature of 280 °C. The COD removal rate of the Pt/Al2O3@cordierite catalyst was almost 100% at the reaction temperature of 320 °C, with the activity being basically unchanged after high-temperature hydrothermal treatment, but sulfur poisoning occurred. The Fe2O3 catalyst coupled with the Pt/Al2O3@cordierite catalyst showed excellent catalytic activity and stability, and the optimal reaction temperature and residence time were 320 °C and 0.3 s, respectively. In the continuous treatment of biodiesel wastewater with the COD of 99 465 mg L−1 for 200 h, the COD and sulfur content of the treated wastewater were less than 400 mg L−1 and 1 mg L−1, with the COD removal rate and sulfur removal rate exceeding 99.62% and 81.38%, respectively. In addition, no organic gas or SO2 was detected in the exhaust gas generated during the reaction, and the removed organic matter was converted into CO2 and H2O.

Graphical abstract: Catalytic combustion of biodiesel wastewater over the Fe2O3 catalyst coupled with a Pt-based catalyst

Article information

Article type
Paper
Submitted
30 Mar 2024
Accepted
26 Jul 2024
First published
01 Aug 2024

Environ. Sci.: Water Res. Technol., 2024, Advance Article

Catalytic combustion of biodiesel wastewater over the Fe2O3 catalyst coupled with a Pt-based catalyst

S. Yu, W. Yuan, J. Bai, Q. Xie, X. Liang and Y. Nie, Environ. Sci.: Water Res. Technol., 2024, Advance Article , DOI: 10.1039/D4EW00259H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements