Issue 10, 2024

Sensitivity analysis of planetary boundary layer parameterization on meteorological simulations in the Yangtze river delta region, China

Abstract

The planetary boundary layer (PBL) plays a crucial role in determining meteorological fields and the diffusion of atmospheric pollutants. Therefore, accurate PBL simulation is necessary for precise meteorological and air quality simulations, and the choice of PBL scheme significantly influences the accuracy of simulation results. In this study, we investigate the seasonal and diurnal variations of typical meteorological variables over the Yangtze River Delta (YRD) region by using the Weather Research and Forecasting (WRF) model using four different closure schemes. These closure schemes include two non-local closure schemes, i.e., Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2), as well as two local closure schemes named Mellor–Yamada–Janjic (MYJ) and Mellor–Yamada Nakanishi and Niino (MYNN). By comparing observations and model inter-comparisons, we discuss the similarities and differences in simulated results among different PBL schemes. The results indicate that local closure schemes, i.e., MYJ and MYNN, generally produce more realistic simulations of meteorological parameters. MYNN performs best in summer with a mean bias (MB) of 0.41 °C for temperature and 0.44 m s−1 for wind speed, while MYJ shows better results under stable conditions during winter with a MB of 0.64 °C for temperature and −5.76% for relative humidity. YSU is found to have less bias in PBL height during summer with the highest R up to 0.81, while MYJ outperforms the three other schemes with the least MB of 38 m (R = 0.65) in winter. Each PBL closure scheme, i.e., the MYJ and MYNN local closure schemes, may not accurately capture all physical processes, leading to performance variations, especially during transitional seasons and under specific diurnal conditions. Thus, it is important to note that each scheme has its strengths and weaknesses, and the selection of the most appropriate scheme should depend on the specific variables and scenarios under consideration.

Graphical abstract: Sensitivity analysis of planetary boundary layer parameterization on meteorological simulations in the Yangtze river delta region, China

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2024
Accepted
29 Jul 2024
First published
31 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2024,4, 1129-1144

Sensitivity analysis of planetary boundary layer parameterization on meteorological simulations in the Yangtze river delta region, China

D. Chen, A. Zhu, L. Huang, E. Yaluk, Y. Wang, M. C. Gee Ooi, Y. Gu, A. Chan and L. Li, Environ. Sci.: Atmos., 2024, 4, 1129 DOI: 10.1039/D4EA00038B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements