Issue 7, 2024

Quantifying the drivers and heterogeneity of global total precipitable water

Abstract

Total precipitable water (TPW) is a key player in the global water cycle, shaping our climate and impacting extreme weather phenomena such as tropical storms and monsoons. Its presence, varying across regions and seasons, is the highest in warm oceanic regions, particularly in the tropics and subtropics, while polar regions see the least. Multiple satellite observations provide compelling evidence of a positive and statistically significant trend in TPW, indicating a notable increase at a rate of 0.037 kg per m−3 per year. Ocean temperatures vary regionally; the North Atlantic Ocean (NAO) warms at 0.02–0.03 °C per year and South Atlantic Ocean (SAO) warms slower at 0.015–0.020 °C per year. The Equatorial and Northeastern Pacific warm at 0.038–0.040 °C per year. The Indian Ocean (IO) warms the fastest at 0.1–0.18 °C per year, and Southern Ocean (SO) and Atlantic Ocean (AO) show mixed trends, including cooling. The intricate relationship between natural climate indices and the global TPW received strong positive feedback from the Pacific decadal oscillation (PDO) and oceanic Niño index (ONI), indicating their profound impact on TPW. The Western Pacific index (WP) exhibits a direct and strong positive feedback loop and a strong relationship of PDO and ONI with TPW. Increasing the α level enhances connections, notably between the multivariate ENSO index (MEI) and dipole mode index (DMI). Interactions between these indices and TPW unveil interconnected climatic processes affecting atmospheric moisture. Recognizing these dynamics is crucial for accurate climate predictions, given the reinforcement of positive feedback loops.

Graphical abstract: Quantifying the drivers and heterogeneity of global total precipitable water

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Mar 2024
Accepted
18 May 2024
First published
10 Jun 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2024,4, 767-781

Quantifying the drivers and heterogeneity of global total precipitable water

S. Maishal, Environ. Sci.: Atmos., 2024, 4, 767 DOI: 10.1039/D4EA00030G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements