Issue 27, 2024

Facile synthesis and bonding of 4-ferrocenyl-1,2,4-triazol-5-ylidene complexes

Abstract

Ferrocene-substituted carbenes have emerged as attractive, redox-active ligands. However, among the compounds studied to date, ferrocenylated 1,2,4-triazol-5-ylidenes, which are closely related to the archetypal imidazol-2-ylidenes, are still unknown. Here, we demonstrate that the triazolium salt [CHN(Me)NCHN(Fc)]I (2; Fc = ferrocenyl), obtained by alkylation of 4-ferrocenyl-4H-1,2,4-triazole (1) with MeI, reacts selectively with metal alkoxide/hydroxide precursors [(cod)Rh(OMe)]2 and [(IPr)Au(OH)] (cod = cycloocta-1,5-diene, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to produce the ferrocene-substituted 1,2,4-triazol-5-ylidene complexes [(cod)RhI{CN(Me)NCHN(Fc)}] and [(IPr)Au{CN(Me)NCHN(Fc)}]I in good yields. The complexes were characterised by NMR and IR spectroscopy, mass spectrometry, cyclic voltammetry, and single-crystal X-ray diffraction analysis. Density function theory (DFT) calculations were used to rationalise the electrochemical behaviour of the carbene complexes and to elucidate the bonding situation in these compounds. An analysis using intrinsic bond orbitals (IBOs) revealed that the 1,2,4-triazol-5-ylidene ligand exerted a strong trans influence and showed a synergistic stabilisation by the negative inductive and positive π-donor effects of the nitrogen atoms adjacent to the carbene carbon atom; these effects were enhanced by conjugation with the CH[double bond, length as m-dash]N bond at the exterior, similar to that in imidazol-2-ylidenes.

Graphical abstract: Facile synthesis and bonding of 4-ferrocenyl-1,2,4-triazol-5-ylidene complexes

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2024
Accepted
17 Jun 2024
First published
18 Jun 2024
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2024,53, 11445-11453

Facile synthesis and bonding of 4-ferrocenyl-1,2,4-triazol-5-ylidene complexes

M. Franc, J. Schulz and P. Štěpnička, Dalton Trans., 2024, 53, 11445 DOI: 10.1039/D4DT01433B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements