Issue 25, 2024

Tunable bandwidth terahertz perfect absorption device based on vanadium dioxide phase transition control

Abstract

Utilizing the phase transition principle of VO2, this paper presents a tunable ultra-wideband terahertz perfect absorption device with simple structure and tunability. The proposed broadband terahertz perfect absorption device is a three-layer structure with a metal reflective layer, a silicon dioxide dielectric layer and a VO2 layer from bottom to top. It was found that the terahertz perfect absorption device's absorption could be dynamically adjusted from 1.2% to 99.9% when changing from an insulated to a metallic state. With the VO2 in the metallic state, the terahertz perfect absorption device has an absorption efficiency of more than 90% in 4.00 to 10.08 THz's ultra-broadband range and near-perfect absorption is achieved in the ranges of 4.71 THz to 5.16 THz and 7.74 THz to 8.06 THz. To explain the working principle of this terahertz perfect absorption device, this paper utilizes wave interference's principle, theory of impedance matching and electric field analysis. Compared to previously reported terahertz metamaterial devices, the vanadium dioxide device proposed in this paper is significantly optimized in terms of tunable range and absorption bandwidth. In addition, the terahertz perfect absorption device is polarization insensitive and maintains good absorptivity over a wide-angle incidence range. This tunable ultra-wideband terahertz perfect absorption device could have applications in the fields of modulation, stealth devices, and thermal emission devices.

Graphical abstract: Tunable bandwidth terahertz perfect absorption device based on vanadium dioxide phase transition control

Article information

Article type
Paper
Submitted
19 Apr 2024
Accepted
28 May 2024
First published
06 Jun 2024

Dalton Trans., 2024,53, 10618-10625

Tunable bandwidth terahertz perfect absorption device based on vanadium dioxide phase transition control

B. Shui, Y. Yi, C. Ma, Z. Yi, G. Li, L. Zeng, Q. Zeng, P. Wu and Y. Yi, Dalton Trans., 2024, 53, 10618 DOI: 10.1039/D4DT01158A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements