Issue 3, 2024

Heteroleptic samarium complexes with high quantum yields for temperature sensing applications

Abstract

Two new crystallographically characterized samarium complexes, [Sm(fod)3(L1)] (1) and [Sm(fod)3(L2)] (2) {L1 = 4,7-diphenyl-1,10-phenanthroline (bath), L2 = 2,2′:6′,2′′-terpyridine and fod = anion of 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione (Hfod)}, were synthesized and thoroughly characterized. Single-crystal (SC) analysis shows that complex 1 is an eight-coordinate structure with a distorted square antiprism geometry (D4d), whereas complex 2 possesses a nine-coordinate structure with distorted muffin geometry (Cs). The NMR results are in line with SC-XRD analysis, which further validate that the complexes remain intact in solutions. The photophysical characteristics of the complexes were studied in both visible and near infra-red (NIR) regions. The PLQY values of the present complexes were found to be higher than those reported in the literature except for a tetrakis Sm complex. This result indicates that both the ligands act as effective antennas for the present systems. A comparison of PLQY and emission lifetime values within the present complexes (in solid state) reveals that energy transfer from terpy to Sm3+ is more effective than that from the bath ligand. Various color parameters of the complexes were calculated, and the determined CCT values suggest that the complexes may be used as warm light sources. The determined band gap values for the complexes are in the range of those for semiconductors, which suggest the application of present systems in the field of optoelectronics. The curve between the emission intensity and temperature for complex 1 shows a perfect linearity (χ2 = 0.99), which suggests that this complex can have potential application as a temperature sensor in the range 60–350 K.

Graphical abstract: Heteroleptic samarium complexes with high quantum yields for temperature sensing applications

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2023
Accepted
04 Dec 2023
First published
15 Dec 2023

Dalton Trans., 2024,53, 1105-1120

Heteroleptic samarium complexes with high quantum yields for temperature sensing applications

A. Ali, Z. Ahmed, K. Iftikhar and R. uddin, Dalton Trans., 2024, 53, 1105 DOI: 10.1039/D3DT03160H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements