Issue 24, 2024

Bifunctional catalysts based on PdZn/ZnO and hierarchical zeolites in the direct synthesis of dimethyl ether from CO-rich syngas: influence of the support and the Zn/Pd molar ratio

Abstract

Following the ‘precursor’ concept, a series of Pd/Zn-based, colloidal nanoparticles (NPs) with different Zn/Pd molar ratios were synthesized by reductive stabilization and used as precursors for the methanol active component in bifunctional catalysts. The bifunctional catalysts for the single-step dimethyl ether synthesis from CO-rich syngas were obtained by immobilizing the NPs on a microporous or hierarchical HZSM-5 zeolite, which were used as dehydration catalysts. The catalysts were characterized, e.g., by (in situ) powder X-ray diffraction, scanning and transmission electron microscopy with energy-dispersive X-ray analysis, N2 physisorption, and NH3 temperature programmed desorption. This study demonstrates the influence of the Zn/Pd molar ratio on the size of PdZn particles formed under reaction conditions, which correlates with the catalytic performance in the STD process. The introduction of mesopores in the hierarchical zeolite by desilication of HZSM-5 increased the DME yield while decreasing the selectivity to hydrocarbons.

Graphical abstract: Bifunctional catalysts based on PdZn/ZnO and hierarchical zeolites in the direct synthesis of dimethyl ether from CO-rich syngas: influence of the support and the Zn/Pd molar ratio

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2024
Accepted
25 Oct 2024
First published
11 Nov 2024
This article is Open Access
Creative Commons BY license

Catal. Sci. Technol., 2024,14, 7152-7162

Bifunctional catalysts based on PdZn/ZnO and hierarchical zeolites in the direct synthesis of dimethyl ether from CO-rich syngas: influence of the support and the Zn/Pd molar ratio

B. Wang, N. Da Roit, M. Zimmermann, M. Boese, T. Zevaco and S. Behrens, Catal. Sci. Technol., 2024, 14, 7152 DOI: 10.1039/D4CY00860J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements