Issue 7, 2024

Substrate scope driven optimization of an encapsulated hydroformylation catalyst

Abstract

Caged complexes can provide impressive selective catalysts. Due to the complex shapes of such caged catalysts, however, the level of selectivity control of a single substrate cannot be extrapolated to other substrates. Herein, the substrate scope using 41 terminal alkene substrates is investigated in the hydroformylation reaction with an encapsulated rhodium catalyst [Rh(H)(CO)3(P(mPy3(ZnTPP)3))] (CAT1). For all substrates, the amount of branched products formed was higher with CAT1 than with the unencapsulated reference catalyst [Rh(H)(CO)2(P(mPy3))2] (CAT2) (linear/branched ratio between 2.14 and 0.12 for CAT1 and linear/branched ratio between 6.22 and 0.59 for CAT2). Interestingly, the level of cage induced selectivity depends strongly on the substrate structure that is converted. Analysis of the substrate scope combined with DFT calculations suggests that noncovalent interactions between the substrate moieties and cage walls play a key role in controlling the regioselectivity. Consequently, these supramolecular interactions were further optimized by replacing the ZnTPP building block with a zinc porphyrin analog that contained OiPr substituents on the meta position of the aryl rings. The resulting caged catalyst, CAT4, converted substrates with even higher branched selectivity.

Graphical abstract: Substrate scope driven optimization of an encapsulated hydroformylation catalyst

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2024
Accepted
16 Feb 2024
First published
16 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2024,14, 1837-1847

Substrate scope driven optimization of an encapsulated hydroformylation catalyst

P. R. Linnebank, A. M. Kluwer and J. N. H. Reek, Catal. Sci. Technol., 2024, 14, 1837 DOI: 10.1039/D4CY00051J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements