Recent advances in rational structure design for nonlinear optical crystals: leveraging advantageous templates†
Abstract
Nonlinear optical (NLO) crystals that can expand the spectral range of laser outputs have attracted significant attention for their optoelectronic applications. The research progress from the discovery of new single crystal structures to the realization of final device applications involves many key steps and is very time consuming and challenging. Consequently, exploring efficient design strategies to shorten the research period and accelerate the rational design of novel NLO materials has become imperative to address the pressing demand for advanced materials. The recent shift in paradigm toward exploring new NLO crystals involves significant progress from extensive “trial and error” methodologies to strategic approaches. This review proposes the concept of rational structure design for nonlinear optical crystals leveraging advantageous templates. It further discusses their optical characteristics, promising applications as second-order NLO materials, and the relationship between their structure and performance, and highlights urgent issues that need to be addressed in the field of NLO crystals in the future. The review aims to provide ideas and driving impetus to encourage researchers to achieve new breakthroughs in the next generation of NLO materials.