A framework for designing main-group single-molecule magnets†
Abstract
Single-molecule magnets (SMMs) are molecular entities with strongly anisotropic magnetic moment. As a result, SMMs display slow relaxation of magnetization at the macroscopic scale. Up to date all experimentally characterized SMMs are based on either d- or f-block metals with lanthanides proving to be the most successful. In the present work, a framework for constructing SMMs consisting purely of main-group elements will be outlined by computational and theoretical means. The proposed main-group SMMs utilize the strong spin–orbit coupling of a single heavy p-block atom or ion that can lead to strong magnetic anisotropy and pronounced SMM properties. A theoretical crystal-field model is developed to describe the magnetic properties of p-block SMMs with a minimal set of parameters related to the chemical structure of the SMMs. The model is used to establish which p-block elements and oxidation states can lead to SMM behavior. A large number of model structures are studied to establish general features of optimal chemical structures. These include one- and two-coordinate structures involving ligands with different coordination modes and all group 13 to 17 elements in periods 4 to 6. The results show that the most viable structures are based on mono-coordinated complexes of bismuth in oxidation state 0 with σ-donor ligands. Structures with bulkier ligands that sterically protect the bismuth atoms are then proposed as a starting point for the practical realization of main-group SMMs. The calculations show that minimizing the anagostic interactions with the bismuth atom is essential in the ligand design, which along with the low oxidation state of bismuth introduces significant synthetic challenges. The results do, however, show that main-group SMMs are plausible from a practical point of view within a limited set of heavier p-block elements in specific oxidation states. Furthermore, the proposed SMMs display much larger energy barriers for the relaxation of magnetization than even the best lanthanide-based SMMs do. This indicates that it is possible that main-group SMMs can supersede even the best currently known SMMs based on d- or f-block elements.