Insights into the chirality-dependent recognition of Danshensu Bingpian Zhi stereoisomers with PPARγ†
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor involved in metabolic processes, inflammation, and energy balance, represents a promising therapeutic target for cardiovascular diseases. Danshensu Bingpian Zhi (DBZ), a chiral compound derived from traditional Chinese medicine, exhibits potential as a PPARγ agonist. Using an ensemble-based docking approach, molecular dynamics (MD) simulations, and the molecular mechanics generalized born surface area (MM/GBSA) methods, we explored the binding modes and energetics of DBZ stereoisomers with the PPARγ ligand-binding domain (LBD). The results indicated that the right-handed stereoisomer (DBZR) binds like a full agonist, while the left-handed stereoisomer (DBZS) binds as a partial agonist with stronger binding energies (ΔGbind), indicating a robust interaction with PPARγ. Both the stereoisomers stabilize the β-sheet region of PPARγ-LBD, potentially protecting Ser245 from phosphorylation by Cdk5, a process implicated in atherosclerosis. Principal component analysis (PCA) and dynamic cross-correlation matrices (DCCM) revealed the complex structural dynamics within the Ω loop, β-sheet, and AF-2 region of PPARγ-LBD upon ligand binding, which may contribute to the unique binding mode and efficacy of DBZS. These findings provide insights into the molecular recognition of PPARγ-LBD by DBZ stereoisomers and their impact on the conformational dynamics of PPARγ, highlighting the therapeutic potential of DBZ and the significance of chirality in drug design.

Please wait while we load your content...