Band alignment in CdS–α-Te van der Waals heterostructures for photocatalytic applications: influence of biaxial strain and electric field†
Abstract
We present a comprehensive theoretical analysis of the structural and electronic properties of a van der Waals heterostructure composed of CdS and α-Te single layers (SLs). The investigation includes an in-depth study of fundamental structural, electronic, and optical properties with a focus on their implications for photocatalytic applications. The findings reveal that the α-Te SL significantly influences the electronic properties of the heterostructure. Specifically, the optical properties of the heterostructure are notably dominated by the contribution of α-Te. The layer-resolved density of states analyses indicate that the valence and conduction bands near the Fermi level are mainly determined by the α-Te SL. Band edge analyses demonstrate a type-I band alignment in the heterostructure, causing charge carriers (electrons and holes) to localize within α-Te. The electronic properties can be further modulated by external strain and electric fields. Remarkably, the CdS–α-Te heterostructure undergoes a transition from type-I to type-II band alignment when subjected to biaxial strain and an external electric field. This may be interesting for the application of the heterostructure for photocatalysis.

Please wait while we load your content...