Issue 40, 2024

Structure and mobility of rare earth ions in interlayer space of montmorillonite: a molecular dynamics study

Abstract

Ion adsorption-type deposits (IADs) are the dominant sources of rare earth elements (REEs), in which REEs are mainly enriched in clay minerals. However, the adsorption mechanism of REEs in the interlayer region of clay minerals is still poorly understood. In this study, by using molecular dynamics (MD) simulations, we explored the interlayer structures and dynamics of REEs-intercalated montmorillonite. La3+ and Lu3+ were used as the model cations for light REEs (LREEs) and heavy REEs (HREEs), respectively. It was found that the most thermodynamically stable state for both LREE- and HREE-montmorillonite was the double-hydration state and the corresponding basal spacing was calculated to be ∼16.1 Å. REE ions are located at the middle plane of the interlayer space and adsorbed on the montmorillonite basal surface through hydrogen bonds between its coordination water and the basal oxygens (i.e. as outer-sphere complexes). La3+ was 9-fold coordinated in the interlayer space with a mono-capped square antiprism coordination shell, while Lu3+ was 8-fold coordinated in a square antiprism cage. The mobility of REEs intercalated in the interlayer was significantly reduced compared to the mobility of REEs in aqueous solutions. The microscopic structures, thermodynamic data, and mobility obtained in the present study can help understand the enrichment and mobilization of REEs in IADs, and provide a molecular level basis for developing more efficient extraction techniques.

Graphical abstract: Structure and mobility of rare earth ions in interlayer space of montmorillonite: a molecular dynamics study

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2024
Accepted
24 Sep 2024
First published
25 Sep 2024

Phys. Chem. Chem. Phys., 2024,26, 26012-26021

Structure and mobility of rare earth ions in interlayer space of montmorillonite: a molecular dynamics study

C. Wang, Y. Zhang and X. Liu, Phys. Chem. Chem. Phys., 2024, 26, 26012 DOI: 10.1039/D4CP02692F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements