Issue 36, 2024

First-principles study of valley splitting of transition-metal dichalcogenides in MX2/CrI3 (M = W, Mo; X = S, Se, Te) van der Waals heterostructures

Abstract

The rapid development of valleytronics makes the application of two-dimensional (2D) transition-metal dichalcogenides (TMDs) in valley electronics important. As a new degree of freedom, valley splitting of TMDs has been achieved and tuned by many methods. Among them, using the magnetic proximity effect (MPE) generated from the interface of 2D van der Waals (vdW) heterostructures stacked with TMDs and one magnetic substrate, valley splitting can be achieved through band edge lifting at the adjacent K/K′ valley. However, the comprehensive mechanism and strategy of valley splitting in 2D TMD heterostructures need to be explored ulteriorly. Here, we systematically investigated valley splitting of MX2 in MX2/CrI3 (M = W, Mo; X = S, Se, Te) vdW heterostructures using first-principles approaches. We demonstrated that twisting is an effective method to enhance valley splitting in MX2/CrI3 vdW heterostructures. Furthermore, we also showed a ∼10 times enhancement in valley splitting by changing the stacking patterns between WTe2 and CrI3 layers. We attribute this to the interlayer magnetic and electronic coupling between the two layers of the vdW heterostructure. The present results provide a theoretical basis and effective methods for tuning valley splitting 2D TMD heterostructures.

Graphical abstract: First-principles study of valley splitting of transition-metal dichalcogenides in MX2/CrI3 (M = W, Mo; X = S, Se, Te) van der Waals heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2024
Accepted
16 Aug 2024
First published
16 Aug 2024

Phys. Chem. Chem. Phys., 2024,26, 23784-23791

First-principles study of valley splitting of transition-metal dichalcogenides in MX2/CrI3 (M = W, Mo; X = S, Se, Te) van der Waals heterostructures

M. Ge, L. Chu, F. Zeng, Z. Cao and J. Zhang, Phys. Chem. Chem. Phys., 2024, 26, 23784 DOI: 10.1039/D4CP02486A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements