Issue 34, 2024

Rational design of a two-dimensional high-temperature ferromagnet from HCP cobalt

Abstract

Cobalt has the highest Curie temperature (Tc) among the elemental ferromagnetic metals and has a hexagonal close-packed (HCP) structure at room temperature. In this study, HCP Co was thinned to the thickness of several (n) unit cells along the c-axis and then passivated by halogen atoms, thus being named Co2nX2 (X = F, Cl, Br and I). For Co2X2 and Co3X2, all of them are not only kinetically but also thermodynamically stable from the viewpoint of the phonon spectra and molecular dynamics. Similar to HCP Co, two-dimensional (2D) Co2F2, Co2Cl2 and Co3X2 (X = Cl, Br and I) are still ferromagnetic metals within the Stoner model but Co2X2 (X = Br and I) is a ferromagnetic half-metal with the coexistence of the metallic behavior for one spin and the insulating behavior for the other spin. Taking into account the spin-orbital coupling (SOC), the easy-magnetization axis is within the plane where the magnetization is isotropic, making it look like a 2D XY magnet. Applying a critical biaxial strain could lead to an easy-magnetization axis changing from the in-plane to the out-of-plane direction. Finally, we use classical Monte Carlo simulations to estimate the Curie temperature (Tc) which is as high as 957 and 510 K for Co2F2 and Co2Cl2, respectively, because of the strong direct exchange interaction. Different from being obtained by mechanical or liquid exfoliation from van der Waals layered structures, our study opens up new possibilities to search for novel 2D ferromagnets from the elemental ferromagnets and provides opportunities for realizing realistic ultra-thin spintronic devices.

Graphical abstract: Rational design of a two-dimensional high-temperature ferromagnet from HCP cobalt

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2024
Accepted
29 Jul 2024
First published
05 Aug 2024

Phys. Chem. Chem. Phys., 2024,26, 22715-22725

Rational design of a two-dimensional high-temperature ferromagnet from HCP cobalt

B. Wang, Y. Hou, C. Jin, H. Zhang, J. Wang, P. Gong, R. Lian, X. Shi and R. Wang, Phys. Chem. Chem. Phys., 2024, 26, 22715 DOI: 10.1039/D4CP01390E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements