Novel BiOI/LaOXI〈IX〉 heterojunction with enhanced visible-light driven photocatalytic performance: unveiling the mechanism of interlayer electron transition†
Abstract
Improving visible light absorption plays an important role in the utilization of solar power for photocatalysis. Using first-principles calculations within the HSE06 functional, we propose that the semiconductor heterojunction BiOI/LaOXI〈IX〉 extends the optical absorption to the near-infrared range, boosts the absorption coefficient from 1.28 × 105 cm−1 to above 2.20 × 105 cm−1 in the visible light range, and increases the conversion efficiency of solar power up to 9.48%. The enhanced optical absorption derives from the significant interlayer transition and excitonic effect which benefit from polarized LaOXI with a flat band in the highest valence band (VB). In BiOI/LaOClI〈ICl 〉, the electrostatic potential difference (ΔΦ) modifies the band edge positions to meet the requirements for photocatalytic overall water splitting, while the polarized electric field (Ep) accelerates the separation of photogenerated carriers and regulates the overpotentials of photogenerated carriers following a direct Z-scheme strategy. In addition, BiOI/LaOXI〈IX〉 is dynamically and thermodynamically stable. Furthermore, only a low external potential is needed to drive the redox reaction. Our theoretical results suggest that BiOI/LaOXI〈IX〉 could be a potential photocatalyst for overall water splitting with enhanced visible light absorption.